skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Ronny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data poisoning--the process by which an attacker takes control of a model by making imperceptible changes to a subset of the training data--is an emerging threat in the context of neural networks. Existing attacks for data poisoning have relied on hand-crafted heuristics. Instead, we pose crafting poisons more generally as a bi-level optimization problem, where the inner level corresponds to training a network on a poisoned dataset and the outer level corresponds to updating those poisons to achieve a desired behavior on the trained model. We then propose MetaPoison, a first-order method to solve this optimization quickly. MetaPoison is effective: it outperforms previous clean-label poisoning methods by a large margin under the same setting. MetaPoison is robust: its poisons transfer to a variety of victims with unknown hyperparameters and architectures. MetaPoison is also general-purpose, working not only in fine-tuning scenarios, but also for end-to-end training from scratch with remarkable success, e.g. causing a target image to be misclassified 90% of the time via manipulating just 1% of the dataset. Additionally, MetaPoison can achieve arbitrary adversary goals not previously possible--like using poisons of one class to make a target image don the label of another arbitrarily chosen class. Finally, MetaPoison works in the real-world. 
    more » « less
  2. This paper studies how neural network architecture affects the speed of training. We introduce a simple concept called gradient confusion to help formally analyze this. When gradient confusion is high, stochastic gradients produced by different data samples may be negatively correlated, slowing down convergence. But when gradient confusion is low, data samples interact harmoniously, and training proceeds quickly. Through theoretical and experimental results, we demonstrate how the neural network architecture affects gradient confusion, and thus the efficiency of training. Our results show that, for popular initialization techniques, increasing the width of neural networks leads to lower gradient confusion, and thus faster model training. On the other hand, increasing the depth of neural networks has the opposite effect. Our results indicate that alternate initialization techniques or networks using both batch normalization and skip connections help reduce the training burden of very deep networks. 
    more » « less